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Abstract

Solving large scale Optimal Transport (OT) in machine learning typically relies on sampling measures to obtain
a tractable discrete problem. While the discrete solver’s accuracy is controllable, the rate of convergence of
the discretization error is governed by the intrinsic dimension of our data. Therefore, the true bottleneck is the
knowledge and control of the sampling error. In this work, we tackle this issue by introducing novel estimators
for both sampling error and intrinsic dimension. The key finding is a simple, tuning-free estimator of OT.(p, p)
that utilizes the semi-dual OT functional and, remarkably, requires no OT solver. Furthermore, we derive a fast
intrinsic dimension estimator from the multi-scale decay of our sampling error estimator. This framework unlocks
significant computational and statistical advantages in practice, enabling us to (i) quantify the convergence rate of
the discretization error, (ii) calibrate the entropic regularization of Sinkhorn divergences to the data’s intrinsic
geometry, and (iii) introduce a novel, intrinsic-dimension-based Richardson extrapolation estimator that strongly
debiases Wasserstein distance estimation. Numerical experiments demonstrate that our geometry-aware pipeline
effectively mitigates the discretization error bottleneck while maintaining computational efficiency.

1. Introduction

Many modern machine learning objects are most naturally modeled as probability distributions: think images (as distributions
of pixel intensities), point clouds, word embeddings, or empirical datasets viewed through their sampling measures. A
principled way to compare and manipulate such objects is provided by Optimal Transport (OT), which seeks the lowest-cost
plan for moving mass from one distribution to another. Through this formulation, one obtains the family of Wasserstein
(Earth Mover’s) distances and associated transport plans, which have become effective building blocks in complex ML
pipelines (Peyré et al., 2019), including generative modeling (An et al., 2019; Chen et al., 2019), speeding up diffusion
models (Li et al., 2023), domain adaptation (Courty et al., 2014), and natural language processing (Kusner et al., 2015).

These applications typically operate in the large-scale regime: data may arise from continuous distributions or from
discrete distributions supported on an intractably large number of points. In practice, one therefore works with discretized
approximations obtained by sampling. This simple step, which replaces unknown measures with empirical ones, has spurred
two complementary research threads: (i) Statistical OT, which quantifies the error induced by this discretization; and (ii)
Computational OT, which designs solvers that scale to the resulting large discrete problems.

Statistical OT in theory. A central question is how well OT quantities computed on samples approximate their population
counterparts. The line of work initiated by (Dudley, 1969) analyzed the 1-Wasserstein discrepancy Wi (p,, p) when a
continuous measure p is replaced by its empirical counterpart p,, built from n i.i.d. samples with uniform weights. This was
later generalized in (Fournier & Guillin, 2015), showing that W), (p,,, p) typically scales as O(n~%/?) in R? for all p > 1,
making explicit the curse of dimensionality: the number of samples required to accurately approximate OT quantities grows
exponentially with dimension. Estimating the transport map itself also suffers from this curse, as established in (Hiitter
& Rigollet, 2021). Several strategies mitigate these effects: exploiting low intrinsic dimensional structure (Weed & Bach,
2017), or focusing on special settings such as semi-discrete OT (Pooladian et al., 2023). We refer to the recent book (Chewi
et al., 2024) for a comprehensive overview.
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OT and Intrinsic Dimension. A key insight mitigating the curse of dimensionality is that real-world data rarely fully
occupy the ambient space R?. As established in (Weed & Bach, 2017), if the measure p is supported on a manifold M of
lower intrinsic dimension d ¢ < d, the estimation error improves significantly to O(n~'/¢*). Furthermore, OT exhibits a
favorable multiscale behavior: the approximation error is not governed by a single global dimension, but rather tracks the
covering numbers of the support at varying radii, often yielding superior non-asymptotic performance. Crucially, when
using OT to compare two different measures, this complexity adapts to the minimum intrinsic dimension of the two measures
(Hundrieser et al., 2024), and these properties extend to the entropic setting (Stromme, 2024).

Computational OT. On the algorithmic side, discrete OT can be posed as a linear program, but generic LP solvers are
prohibitive at scale. The practical impact of OT in ML stems from specialized, structure-exploiting algorithms. A turning
point was (Cuturi, 2013), which introduced entropically regularized OT (EOT) solved efficiently by Sinkhorn iterations with
complexity O(n?/e?) to approximate discrete OT with e-accuracy. Subsequent work improved constants and convergence
guarantees, including primal-dual methods (Dvurechensky et al., 2018; Lin et al., 2019) and recent advances achieving
O(n?/e) (Blanchet et al., 2023), which appears optimal for this class of problems.

The Sinkhorn Divergence: statistical-computational bridge and its limits. A principled attempt to bridge statistical
and computational OT lies in the study of Sinkhorn Divergences (Ramdas et al., 2017; Genevay et al., 2018; Feydy et al.,
2019). By explicitly defining the discrepancy through the discrete Sinkhorn divergence, one achieves a parametric estimation
rate of O(E’d/ 2p-1/ 2) (Genevay et al., 2019; Mena & Niles-Weed, 2019; Chizat et al., 2020). Consequently, the curse of
dimensionality is not removed but rather shifted into the regularization parameter . Crucially, the exponent d governing this
trade-off is the intrinsic dimension d 4 of the data manifold (Stromme, 2024), and a well-calibrated speed at which e — 0
nearly achieves the minimax rates to estimate the Wasserstein distance.

Missing Pieces. Despite this progress, a fully operational link between statistical theory and computational practice remains
elusive. While Sinkhorn Divergences offer a theoretical trade-off, calibrating it well requires knowledge of the typically
unknown underlying intrinsic dimension d 4 to select the optimal €. As a result, practitioners are left without concrete
guidance: they often drive numerical solvers to very high precision, implicitly treating the sampling error as negligible,
or tune ¢ heuristically without addressing the bias-variance trade-off. To apply OT with calibrated, problem-dependent
accuracy, one requires a practical way to estimate the discretization error and the intrinsic dimension directly from the
available samples.

Contributions. To address these challenges, we propose a geometry-aware framework that estimates both the discretization
error and the intrinsic dimension directly from samples, without relying on expensive ground-truth computations. Our
specific contributions are:

* A solver-free discretization error estimator. We introduce a novel estimator for the quantization error OT.(p, p ),
where p} represents the empirical measure with weights optimally adjusted to minimize the transport cost. Our key
theoretical insight is that the semi-dual formulation of this problem admits a closed-form solution. This allows us to
estimate the error via simple Monte Carlo integration, bypassing the need for an OT solver entirely. The resulting
estimator is parameter-free, highly parallelizable on GPUs, and computationally inexpensive.

* A scalable intrinsic dimension estimator. Leveraging the convergence behavior of our error estimator, we derive
an estimator of the empirical intrinsic dimension dj, of the data. By analyzing the decay of the error as a function of
sample size, our estimator captures the multi-scale geometric structure of the distribution, consistent with the theoretical
findings in (Weed & Bach, 2017). Crucially, this method scales linearly (i.e., O(n)) in both time and space O(n),
making it applicable to large-scale datasets.

* Debiased Wasserstein estimation via Diagonal Richardson Extrapolation. We propose a new extrapolation scheme
that combines our intrinsic dimension estimate with Sinkhorn Divergences. While previous work (Chizat et al., 2020)
utilized Richardson extrapolation solely on the regularization parameter €, we introduce a diagonal approach that
links € to the sample size n and the intrinsic dimension dj,. This joint debiasing strategy effectively cancels out both
the first-order entropic bias and the statistical discretization error. This scheme permits us to have a convergence of
o(n=2/{dn+4)) for W2, compared to o(n~2/(?+8)) for the e-only Richardson scheme.

We validate our pipeline on synthetic manifolds and real-world datasets (MNIST, CIFAR), demonstrating that our dimension
estimator is accurate and that our extrapolation scheme yields Wasserstein estimates with significantly reduced bias compared
to standard baselines.



Geometry-Aware Optimal Transport: Fast Intrinsic Dimension and Wasserstein Distance Estimation

Notations. We note || - || the Euclidean norm and wy the volume of the unit d-dimensional ball. For a,b € R, a V b :=
max{a, b} and a A b := min{a, b}. P(R?) is the set of probabilities in R?, and for p € P(R?), Supp(p) is its support. A,
represents the probability simplex in R%: A4 := {w € RY : Zle w; = 1}. O(+) and o(-) are the usual approximation
orders. We use f < g if there exists a universal constant C' > 0 such that f(-) < Cg(-). We write a =< b if both a < b and
b <a.

2. Preliminaries
2.1. Optimal Transport: Primal, Dual, and Semi-Dual

We consider probability measures supported on a compact metric space X C R?. Given source and target measures
u,v € P(X) and a cost function ¢ : X x X — R, the Kantorovich optimal transport problem is defined as:

OTufpr) = _min [ clay)in(z,y) M)
mell(p,v) Jxxx

where II(u, v) denotes the set of joint distributions with marginals p and v. When c(z,y) = ||z — y||P for p > 1, the
quantity OT..(u, v)'/? defines the p-Wasserstein distance, denoted W, (i, /) (Villani, 2009).

Dual and Semi-Dual Formulations. The Kantorovich problem admits a dual formulation involving continuous potential
functions f,g € C(X):

OTc(p,v) = sup / Jdp+ / gdv. )
Y

f(@)+g(y)<c(z,y)

By defining the c-transform of a potential g as g°(x) := inf,[c(z,y) — g(y)], one can eliminate the constraint f(x) <
c(x,y) — g(y) by setting f = ¢g°. This yields the semi-dual formulation, which depends on a single potential g:

OTc(p,v) = sup / g°dp+ / gdv. 3)

geC(x)

This semi-dual form is crucial for our analysis as, even if p is continuous, having v discrete converts the constrained
continuous problem into a finite dimension problem, a property we will leverage to construct our error estimator.

2.2. Entropic Regularization and Sinkhorn Divergences

To overcome the computational cost of exact OT, one commonly employs Entropic Regularization. We define the regularized
objective in its primal form by adding a Kullback-Leibler penalty:

OT..(u,v) := min /Cdﬂ' + eKL(7|p @ v), 4)
m€ll(p,v)

where € > 0 is the regularization strength. To correct for the bias introduced by entropy (where OT . . (1, 1) # 0), we can

use the the Sinkhorn Divergence:

1 1
SE(M7 V) = OTC,E(,LL7 V) - §OTC,E(I'L7 /j/) - §OTC,E(V7 V)a (5)

which, for ¢ = || - ||?, is a divergence that interpolates between OT (as ¢ — 0) and Maximum Mean Discrepancy (as € — 00)
(Genevay et al., 2018; Feydy et al., 2019) .

2.3. Statistical Rates and Intrinsic Dimension

When approximating x and v via empirical measures i, and 7,,, the discretization error was classically shown to scale with
the ambient dimension d. Informally, for p-Wasserstein costs and Sinkhorn Divergences:
E[‘Wg(ﬁm Un) — Wé’(,u, v)|] = O(nip/d)a
E[|Se(fin, V) — Se(p,v)|] = O(n~1/2e7/2).
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Crucially, subsequent work established that d is not the ambient dimension, but the minimum intrinsic dimension of the
two measures, both for OT (Weed & Bach, 2017; Hundrieser et al., 2024) and EOT (Groppe & Hundrieser, 2024; Stromme,
2024). More precisely, the rate tracks the e-covering number N, defining an effective dimension d. ~ min,¢,, , 105/1\/%_
This quantity exhibits a multi-resolution behavior: OT and EOT adapt to the geometry at varying scale of observation,
capturing d. in the non-asymptotic regime where the discretization error is still significant. This allows the estimator to

exploit the effective geometry at coarse scales, in regimes where d. > lim._¢ d..

3. A Simple Estimator of the Wasserstein Discretization Error

As discussed in Section 2, the reliability of OT in machine learning hinges on controlling the error incurred when replacing
continuous measures with discrete samples. A fundamental insight into this error comes from the triangle inequality of the
Wasserstein distance. For any two measures y, v and their discrete approximations i, 7, the estimation error is bounded by:

|Wp(,qu) - Wp(ﬁv §)| < Wp(#aﬁ) + WP(V7 ’//\)-

This decomposition reveals that the total error is governed by how well discrete samples capture the geometry of the
underlying distributions. While asymptotic theory predicts a rate of n~ /¢, these bounds offer limited practical guidance for
finite datasets. Estimating the term OT.(p, p) for p = p, v directly from data serves two critical purposes: (i) it provides a
concrete, non-asymptotic quantification of the approximation quality; and (ii) the rate at which this error decays with sample
size acts as an indicator of the intrinsic dimension of the measure.

In this section, we introduce a fast, solver-free estimator for this one-sample discretization error OT.(p, p7, ), where p;
represents the optimal discrete approximation of p given a fixed support of n points.
3.1. Wasserstein discretization error and semi-discrete OT

Consider a measure p and a fixed support set X = (X1, ..., X,,) sampled i.i.d from p. For any weight vector a € A, let
Pm,a = > iy a;0x, be the corresponding discrete measure. The computation of OT.(p, pm,a) constitutes a semi-discrete
optimal transport problem. Even with continuous p, this problem admits a finite-dimensional semi-dual formulation (3):

gER?

OT.(p. )= max | [ & (@a0(e) Y ain| ®)
=1

Solving (6) typically requires expensive stochastic gradient descent or semi-discrete solvers (Genevay et al., 2018; Kitagawa
et al., 2016), making it impractical if the goal is merely to evaluate the quality of the discretization when one uses
OT.(fin, V) as a computationally tractable proxy of OT.(u, V) . Remarkably, the following proposition demonstrates that
we can bypass optimization entirely. By selecting the optimal weights for the fixed support, the dual potential collapses to
the zero vector, yielding a closed-form solution.

Proposition 3.1. Let c be a continuous cost. Given p € P(R?) and a support X = (x1,...,7,) € (R?)", define the
weights w,, = (w1,...,w,)" by

w; = p({x IS Rd;mjn oz, zj) = c(z, xi)}),
J
and set pf, = Z?:l w;0y,. Then p, provides the best approximation of p supported on X, that is,
n
P, € argmingen, {OTe(p,3) | 72 = D" aid, },
i=1
and the minimizer is unique. Moreover, the zero vector 0,, is the maximizer of the semi-dual (6) at p},. That is,
OT.lp.7) = [ 03 (a)dp(o).
R

Proof. By definition of w,,, we have that the vector 0,, is the Kantorovich potential of the semi-discrete OT problem
between p and p,,. Indeed, the first-order optimality condition, stating that g is optimal if and only if VH(g) = 0,, reads
p({gc(x) = e(x, X;) — gi}) = w; which is exactly how we defined the weights w; fixing g; = 0, i € [1, n].

4
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Since 0,, is its Kantorovich potential, the optimal transport reads for all z € Re:z— X, = argmin Xic(a:, X;). That is,
every point is sent to its closest neighbor from in X . For any other probability weight vector, another g’ € R™ such that
g’ ¢ {\1,, )\ € R} will be an optimal vector, which will lead to an OT plan where a strictly positive mass of p will not be
sent to its nearest neighbor, therefore increasing the OT cost. O

3.2. A Solver-Free Monte Carlo Estimator

The key insight of Proposition 3.1 is that for the optimally weighted measure p;, the semi-dual objective is maximized at 0,,.
This simplifies the OT cost to the integral of the c-transform of the zero vector, which is simply the distance to the nearest

neighbor in the support X. Consequently, we can approximate OT.(p, p,) using a direct Monte Carlo (MC) estimator

6?;:, using IV additional samples X7, ..., Xy H P

1 1
OTy i=—Y 0°(X}) = — X 7
N NZ n(Xk) N 2 i o(X, ;). O

This estimator is computationally efficient, fully parallelizable on GPUs, and requires no OT solver. Furthermore, if explicit
weights are required, they also admit a natural MC estimator:

N
1 .
w; R~ ngll{argmjinc(Xk,xj):i} = W; N.

The following theorem establishes that these estimators concentrate exponentially fast around their true values.

Proposition 3.2. Suppose that p has a bounded support and that the cost function is continuous. Then for any § > 0, with
probability at least 1 — §, we have:

OT.(p,py) — OTN‘ < \/m+ 7Cp (10{%/5) :

Ewyc,or

where C', = sup,, c(z,y) and G3. is the usual biased sample variance estimator

sy Esupp(p)

1 2
Nz(]gﬁ%c Xk, x5) — OTN> .
=1

Also, for any i € [1,n], with probability 1 — §, we have

—~ Wn. i (1—wn.4)lo § o
i — D] < \/2 (=B og(2/9) y TIog(2/5)

Eyc,w;

Proof. Under our assumptions, we can bound a.s. 05,(-) = minjep ] ¢(-, z;) by C,. Therefore, the empirical Bernstein
bound in Theorem 4 in (Maurer & Pontil, 2009) yields the first inequality. The same theorem applies to the second inequality,
since w; € [0, 1] for all 1. O

We conclude with two practical observations. First, although the bound depends on the diameter C,,, this term appears linearly
and does not affect the convergence rate. Second, while standard practice often assumes uniform Welghts (”““‘f L Z 0z,)s
our estimator OT » v targets the optimally weighted measure p7. Since OT.(p, pi) < OT.(p, p2"l), our method provides a
tight lower bound on the discretization error achievable on the support X. More importantly, because p;, optimally adapts
the mass to the geometry of the support, the decay rate of OT.(p, p;) as n increases is driven purely by the intrinsic
geometry of p. This property makes 6?;, the key building block for our fast intrinsic dimension estimator, detailed in the
next section.
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4. Discretization Error and Intrinsic Dimension Estimation
4.1. Geometric setting: Multi-scale behavior and Covering Numbers

A recurring theme in machine learning is that high-dimensional data often exhibits low-dimensional structure. While
the manifold hypothesis, positing that data concentrates on a smooth submanifold M C R?, provides a useful baseline,
real-world data rarely adheres strictly to such idealized assumptions. Instead, complex distributions often display a
multi-resolution behavior, where the effective geometric complexity depends on the scale of observation or the desired
approximation accuracy.

To illustrate this, consider p € P(R'?) constructed as the following mixture: p := 12([0,1]% x {0}*) + 3U([1, 2]® x {0}?).
Strictly speaking, the support has a topological dimension of 8. However, the behavior of the optimal transport discretization
error reveals a more nuanced reality. If one aims for a coarse approximation (e.g., a discretization error of 50%), the problem
may behave effectively like a 2-dimensional problem. Conversely, demanding a refined accuracy (e.g., less than 10% error)
forces the discretization to fill the 8-dimensional volume, causing the error rate to suffer from the curse of dimensionality
associated with d = 8.

This example highlights that for probability measures, the relevant notion of complexity is not a static integer but a dynamic
quantity related to the covering numbers of the support at different radii (Weed & Bach, 2017). Consequently, we replace
rigid geometric definitions (such as the manifold hypothesis) with a functional assumption based on the convergence rate of
the Wasserstein distance itself.

We assume that within a specific range of sample sizes 1 € [lmin, Pmax), the discretization error is governed by an effective
intrinsic dimension d;y.

Assumption 4.1 (Effective Intrinsic Dimension). Let p € P(R?) be a probability measure with finite diameter. We
assume that for n € [Nmin, "max), the convergence rate of the 1-Wasserstein discretization error is governed by a dimension
parameter s = dj,¢. Specifically, there exist constants C, Co > 0 depending essentially on Diam(p), such that Cy < ¢C}
for a universal constant ¢ > 1, and:

Lower bound (Quantization limit): For any discrete measure o, supported on at most n points, the approximation error is
lower-bounded by the dimension:

Wi(p,0n) > Cin~ Y5, (8)

Upper bound (Statistical performance): The empirical measure p,, constructed from n i.i.d. samples satisfies:

E[W1(p, pn)] < Can ™'/, ©)
for all s’ > s. We refer to the exponent s as the intrinsic dimension d,,; of p in the regime [Pmin, "max]-

This assumption posits that d;,,; captures the “difficulty” of the Wasserstein discretization error of p with a finite number
of points. In the asymptotic limit (n,;; — o0), if p admits a density with respect to a manifold of dimension d x4, then s
coincides with d . We refer to the appendix for further discussion, and bounds on the constants in specific settings.

4.2. Leveraging our discretization estimator to estimate the intrinsic dimension.

To estimate the intrinsic dimension, we leverage the scahng behavior of the one-sample discretization error established in

Assumption 4.1. Using our Monte Carlo estimator OT ~ (with ¢(z, y) = ||x — y||) defined in Section 3, we evaluate the
error at two distinct support sizes, n and nn (with 7 > 1). The ratio of these estimates reveals the exponent governing the
convergence rate, leading to the following estimator:

i log 7
d’ = — ——m s
log OT y —log OT y

where N denotes the number of samples used in the MC approximation. Evaluating d* reduces to computing two MC
estimates, yielding a linear complexity in n. The statistical guarantee of our method is given in the following theorem.

Theorem 4.2. Suppose that Assumption 4.1 holds and that din > 2 and let Diam(p) denote the diameter of p’s support.

6
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Then, for v,& > 0 and nn < Npax, Using

> ((1 +C§)Cz)2d%“° ,
dint

Diam(p)? dint —2
> | AP
n (G towa/n)

2 ; 2
N> 16d2, v 1 2D1a1r21(P) nz/d;mnwdm 1og(§) ,
72 (logn)? 1 o

we have with probability 1 — §

dint

<d* < (14 7)ding -

Comparison to the literature. The concept of leveraging the multi-scale decay of Wasserstein error for dimension
estimation was pioneered in (Block et al., 2022). However, their estimator relies on the two-sample empirical distance:

J_ logn
log W (,anv ﬁn) — log Wy (ﬁnnv ﬁ/nn) ’

where p,, and p), are independent empirical measures of n points. This approach rests on the fact that E[W;(p,,, pl,)] =~
E[W1(pn, p)], but it faces a severe computational bottleneck: evaluating W (p,,, p,,) requires solving a full discrete optimal
transport problem. Standard Linear Programming solvers scale as O(n?), while approximate Sinkhorn solvers scale as
O(n?/¢). This prohibitive cost restricts such estimation to small datasets or requires substantial approximations that may
bias the dimension estimate.

In contrast, our estimator d* relies on the one-sample error to the optimal support, which we approximate via Monte Carlo
without any optimization. The resulting complexity is linear O(n), allowing for dimension estimation on large-scale datasets
where standard OT solvers are intractable.

4.3. Experiments

We compare our estimator, denoted as Semi-Discrete 17, against the Discrete W estimator based on (Block et al., 2022)
and standard baselines from the scikit-dimension package (Bac et al., 2021): MLE, CorrInt, IPCA, TwoNN.

10.50s

101 4
o
9
a _ R 100
@ 1
£ ]
Q. 11014
- 1
12}
- 1N
1102
Mixture Mixture Pure Mean Time (s)
(Uniform) (Gaussian) Gaussian
A corrint B MLE B TwoNN

K Discrete W, [ Semi-Discrete Wi (ours) [ IPCA

Figure 1. Intrinsic Dimension Estimation Benchmark. Comparison of our Semi-Discrete 1/ estimator against the Discrete W, baseline
and standard geometric estimators. The dashed line represents the ground truth effective dimension diny = 10. Our estimator matches the
robustness of discrete OT on mixtures but runs orders of magnitude faster (< 0.1s vs ~ 10s).

Experimental Setup: We generate data in R?° under three configurations designed to have an effective Wasserstein
dimension of di,; = 10: (1) a mixture of hypercubes (80% 2D, 20% 10D); (2) a mixture of low-rank Gaussians (80% rank 2,
20% rank 10); and (3) a single rank-10 Gaussian. OT-based estimators compare supports of size n = 2000 and nn = 3000,
while baselines use a fixed size of 3000. Experiments were repeated 20 times.

7
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Figure 1 highlights the performance differences. While all methods succeed on the simple manifold (Config 3), standard
geometric estimators fail to capture the global transport complexity of the mixtures (Configs 1 & 2). In contrast, both
OT-based methods robustly recover di,; ~ 10. Crucially, our Semi-Discrete estimator is drastically more efficient than
the Discrete Wasserstein-based estimator: it computes the estimate in under 0.1 seconds, compared to ~ 10 seconds
on GPU for the Discrete W baseline which requires solving exact OT problems. For reference, CPU run times for
scikit-dimension baselines are also provided.

5. Coupled Bias Reduction: The Diagonal Richardson Estimator

Sinkhorn divergence serves as a fast proxy for OT, supported by efficient solvers like geomloss (Feydy et al., 2019)
which offer linear memory usage and high GPU performance, provided ¢ is not vanishingly small. However, estimating
the unregularized Optimal Transport cost from finite samples with the Sinkhorn divergence presents a dual challenge:
the estimator is biased by both the regularization parameter ¢ (entropic bias) and the finite sample size n (statistical
bias). To further reduce Athe entrgpic biaAs, (Chizat et al., 2020) introduced a Richardson Extrapolation scheme on ¢,
proposing the estimator R. , = 25¢,, — S /z ,- Although this approach theoretically improves the approximation error

t0 E[|R,, — W2|] = o(n=2/(d+8)) (with & < n~1/(4+8))_ The first improvement is naturally to replace d in & with our

estimator d* of dine. Then, even if the sample approximation is not the asymptotic limiting factor, its large constant pre-factor
can render entropic debiasing ineffective in practice by targeting a term that is not the dominant source of error.

To better tackle both the entropic and statistical bias, we propose a coupled strategy—the Diagonal Richardson Estima-
tor—which links the regularization schedule ¢ directly to the sample size n. By tackling both biases simultaneously, this
method leverages our intrinsic dimension estimator to calibrate the debiasing optimally.

Total bias decomposition. It is well known in statistical OT that the entropic regularization should decay with the number
of samples; i.e., £, < n~ ¢ for some exponent a > 0. The total expected error decomposes into:

]E[S'\sn,n] - W22 = (E[é\en,n] - Ssn> + (San - W22) .
—_—— TN

Statistical Bias Entropic Bias

We characterize the asymptotic expansions of both terms. The entropic bias expansion (10) follows from Proposition 4 in
(Chizat et al., 2020) (assuming finite Fisher information of the measures), while the statistical bias expansion (11) is derived
from Theorem 2 in (Stromme, 2024), which establishes the lower complexity adaptation of the Sinkhorn divergence:

Biasen(n) = Cyn~2 4 oem(nfga) , (10)
Biasu(n) < Cyn~(170dm)/2 4o (n=(1madi)/2) (11)

Remark 5.1. The constant governing the statistical bias is formally of the form c(¢)n~'/2, depending on the second
derivative of the Sinkhorn divergence. The upper bound c¢(g) < g~ %nt/2 was obtained independently in (Stromme, 2024;
Groppe & Hundrieser, 2024), Example 5, through the rate n~(1=4d9)/2 when ¢ =< n~® on the standard error. This rate is
solely governed by the statistical bias since S. ,, — E[S; ] = Op(1/4/n) uniformly in € > 0 in Proposition 4 of (Chizat
et al., 2020). The sharpness of the rate of the statistical bias was not perfectly established, though discussions are provided
for our case of interest ¢ = n~% and d, replaced by d;,;. Therefore, to be completely rigorous, we use the equality in (11)
as an assumption, as it is compulsory for our Richardson method to effectively cancel the bias term.

Assumption 5.2 (Sharpness of Statistical Bias). We assume that the statistical estimation error of the Sinkhorn divergence
admits a sharp asymptotic expansion. That is, equality holds in (11):

E[S\En,n] - Se,,, = C4n7(1iadim)/2 + Ostat(ni(liadint)/Z) s

where Cy # 0 and dy, is the intrinsic dimension of the data.

Optimal schedule and the Diagonal Estimator. To construct an efficient estimator, we seek a rate € =< n~“ that balances
the convergence rates of the entropic and statistical biases. Equating the exponents 4a = 1 — adjy; yields the optimal decay
rate ¢ = m. Under this schedule, a diagonal Richardson extrapolation can eliminate the first-order terms of both biases
simultaneously.
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We define our Diagonal Richardson Estimator using sample sizes n and 2n as:

~piag ~ ~
Ry, = w2, 5c,, 2n + WnSe,, n

where the weights are determined by the common decay rate v = ﬁ of the bias terms:

27 -1

YT T

The following proposition establishes the improved convergence rate of this coupled estimator.

Proposition 5.3. Under Assumption 5.2, and using the schedule e,, < n~'/(@=+4) the Diagonal Richardson estimator
satisfies:

E |15~ W3I| = o(n” ).
Furthermore, if the higher-order terms satisfy 0pn(n™2%) = O(n™%%) and 0gq(n~(1—0%nt)) = O(n=2+2adine) the rate

a4
improves to O(n~ % T4),

Therefore, this rate is slightly better than the e-only Richardson, which is (n~ Tone 75 ) using djpt.

Proof sketch. Let RP# = lim,, . E[R5"¢]. The error decomposes as:
E [|§g;§g - Wfl} <E {lﬁ’;jfg - E[ﬁ?jﬁg]ﬂ
+ |E[]3L12371;1g] — RDiag| 4 |RPisz _ pp2|
-2 2
= O(1/vn) + ogar(n” Tt ™) + Ogpe(n Tme ™).

The stochastic error scales as O(n~1/2), which is negligible compared to the bias terms for dj,; > 2. The choice of weights

cancels the leading order terms n Tt in the bias, leaving only the higher-order remainder. Remark that if Assumption
5.2 is not fulfilled, we still have the asymptotically (in d;,;) minimax rate O(n’2/ (di“t+4)).

— 1]
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Figure 2. Sensitivity to Intrinsic Dimension. We perform Diagonal Richardson extrapolation, 2n = 2000, on a source synthetic mixture
in R'® (90% mass on a 5D Gaussian, 10% on a 1D Gaussian) to a 10D Gaussian. By varying the dimension parameter d used in the
extrapolation weights, we observe that the estimation error is minimized exactly at the dominant intrinsic dimension d = 5. This confirms
that correctly calibrating the schedule to the effective geometry is essential for optimal debiasing.

Bagged Diagonal Richardson. While the Diagonal Richardson estimator 1?2‘;;;‘ ¢ successfully reduces the bias, this

improvement comes at the cost of increased variance. This variance increase comes from extrapolation involving a weighted
difference from the coefficients ws,, and w,,. Consequently, the noise from the subsampled term S, ,, is amplified in the
final estimate. Furthermore, relying on a single random subset of size n is statistically inefficient, as it discards information
from the unused samples for the low-resolution component. To mitigate this variance increase, we employ a bagging
strategy that averages the low-resolution estimator over K independent subsamples, while retaining the full dataset for the
high-resolution term. The Bagged Richardson Estimator is defined as:

pBagged |
RK,Qn = w2nSagn,2n +

~

K
Wn, i
K kil Sgglk))n . (12)
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This approach stabilizes the estimator by driving down the variance of the subtractive term. We quantify this stability in
terms of the variance inflation relative to the standard Sinkhorn estimator. The proof, detailed in the Appendix, builds on the
second-order Hadamard differentiability of the Sinkhorn divergence established in (Goldfeld et al., 2024).

Proposition 5.4 (Variance Stability). The variance of the Bagged Richardson estimator relates to the variance of the
standard Sinkhorn estimator S, or, as:

Var(ﬁl;(a:gégzd) = Var(s’\gz"}}n) X (1 + m) + 0(1)

Crucially, as the number of bags K — oo, the variance overhead vanishes. The bagged estimator thus achieves the improved
bias rate of the Richardson scheme while converging to the optimal variance floor dictated by the full sample size 2n.

8 o6l i\\ ---- Var(5¢, n)

g . --- Fit « 1/K

5] AN $ Measured Var.

> 0.41 Y

8 a

2

5] Sae

7] Se~c

m ~—— o
0.0 +— T T T T T

1 2 4 8 16 32

Number of Bags (K)

Figure 3. Variance Reduction via Bagging. Using the same mixture setting as in Figure 2, we measure the variance of the Bagged
Richardson estimator as a function of the number of bags K. The variance is computed over 20 runs and repeated 10 times. We observe
aclear 1/K decay in the variance overhead, which converges asymptotically to the variance floor of the standard Sinkhorn estimator

-~

Se,.,,2n (dashed line). This confirms that bagging eliminates the stability cost of extrapolation.

5.1. From OT Geometry to Wasserstein Distance Estimation

We validate our full “geometry-aware” pipeline by estimating W2 on image manifolds (MNIST, FashionMNIST, CIFAR10).
To overcome the lack of ground truth for empirical measures, we construct synthetic target measures v = (7") 4 using
1

a strictly convex potential 1g(z) = %||z||* + ICNN(z). By Brenier’s theorem, 7% = V1) is the unique optimal map,

providing an exact reference distance W3 (u, v) = E[||z — T*(x)||?].

Experimental Setup. For each dataset, with n = 1000, we first estimate the intrinsic dimension d (Sec. 4) and plug it into
our Bagged Diagonal Richardson estimator (K = 12) to calibrate the bias cancellation weights. We compare our approach
against the standard Sinkhorn divergence ("Base”), and the standard e-Richardson extrapolation ("Eps-Rich”) (Chizat et al.,
2020).

Table 1. Benchmark of Wasserstein estimation 173,

Dataset Method Error £ std ~ Avg Time(s)
Base 1.210 £ 0.02 0.94
CIFAR10 n-Diag-Rich  0.089 £ 0.03 2.85

7-Diag-Rich 0.201 £0.03 0.89
Eps-Rich 1.007 £ 0.02 1.56

Base 0.852 £ 0.02 0.84
Fashion  n-Diag-Rich 0.259 4+ 0.02 2.89
MNIST  %-Diag-Rich 0.355 4+ 0.04 0.91
Eps-Rich 0.849 £ 0.02 1.26

Base 0.788 + 0.01 0.78
n-Diag-Rich  0.219 + 0.02 3.30
7-Diag-Rich  0.420 + 0.04 0.95
Eps-Rich 0.706 + 0.01 1.40

MNIST

Results. Table 1 confirms that incorporating intrinsic geometry is essential for accurate estimation. Standard e-extrapolation
fails to address the statistical bias dominating in high dimensions, yielding errors comparable to the baseline, even when using

10
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d*. In contrast, our diagonal estimator, calibrated via c/l\*, reduces the error by an order of magnitude (e.g., 1.21 — 0.09 on
CIFAR10). This validates that coupling the regularization schedule to the intrinsic dimension (¢ < n~/(?"+4)) effectively
mitigates the discretization bottleneck. Furthermore, even with a reduced budget (reduced sample size 7 - bagging K = 12),

our method significantly outperforms baselines while matching their computational cost.

6. Conclusion and Future Work

In this work, we have established that explicitly estimating the intrinsic dimension of data is key to overcoming the statistical
limits of discrete Optimal Transport. We showed that our Diagonal Richardson estimator, calibrated via a solver-free
intrinsic dimension estimate, significantly improves the accuracy of Wasserstein distance estimation on high-dimensional
manifolds. This framework opens several directions for future research. First, the validity of our bias cancellation relies
on the sharpness of the statistical error expansion (Assumption 5.2), a property that warrants further theoretical analysis.
Second, while we focused on the scalar transport cost, extending this “geometry-aware” debiasing strategy and analysis to
Kantorovich potentials and gradients remains a promising avenue for improving training stability in generative modeling.
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A. Intrinsic Dimension and Wasserstein Distances

We recall some notions and properties related to the intrinsic dimension and multi-resolution behavior of the Wasserstein
dimension and Sinkhorn divergences, which are present in (Weed & Bach, 2017; Stromme, 2024).

A.1. Notions.

Definition (J-covering number of a set). Given a set S C X, the §-covering number of S, denoted N5 (S), is the minimum

m such that there exists m closed balls By, ..., By, of diameter ¢ such that S C |J, ,,,, Bi. The d-dimension of S is the
quantity o
log N5(5)
ds(S) i= ———=.

The following definition is particularly useful when working with measures instead of sets, allowing one to ignore a small
fraction of the mass. The following definition appears first in (Dudley, 1969).

Definition ((0, 7)-covering number of a measure). Given a measure i on X, the (d, 7)-covering number is
Ns(u, 7) := inf{N5(S) : u(S) > 1 -7}

and the (0, 7)-dimension is
lOg N§ (:uv T)

d(;(/’L?T) = _10g5

The limits are defined by
Ne(p) = Ne(p,0),  de(p) = de(p,0) .

Definition (Wasserstein dimensions). The upper and lower Wasserstein dimensions are respectively

dy(p) = inf {s € (2p, 00) : limsup d (,u75%) < s} ,
6—0

dy (@) = lim lim inf ds(p, 7) .

7—=0 §—=0

A.2. Properties

Proposition A.1 (Prop.5 and Corollary 1 (Weed & Bach, 2017)). Let p € [1,00). Suppose there exist &' < 1 and s > 2p
such that ds (s, & —7[)217) < sforall e <§'. Then there exist constants C, Co such that:

E[W2(, fin)] < Crn /% + Con™1/2, (13)
In particular, E[W, (11, fin)] < n~Y%. As a corollary, if s > dy (1), we have EIW, (1, [in)] S n=1s,

We now derive a slightly different proposition, based on Proposition 6 of (Weed & Bach, 2017), with a similar proof.

Proposition A.2 (Local Lower Bound for Wasserstein Rates). Let y1 be a probability measure on R and let p € [1,00).
Suppose there exist constants T € (0,1), A > 0, s > 0, and a scale interval [a,b] C (0,1] such that the (0, T)-packing
number satisfies

Ni(p,7) > A6—*, V6 € [a,b]. (14)

If the sample size n satisfies the validity condition Ab~° < n < Aa™?*, then for any discrete measure v supported on at
most n points (including the empirical measure [i,,), we have the following lower bound:

W2 (u,v) > <T4"’AP/S) n-p/s, (15)

13
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Proof. Let n satisfy the validity condition. We define the critical radius &,, := (n/A)~'/. By the condition Ab=* < n <
Aa~?, it follows explicitly that a < €, < b.

Consider an arbitrary ¢ < &, such that ¢ € [a, b]. By the packing assumption, the number of disjoint balls of radius ¢ that
can be packed into the support of i (capturing mass 1 — 7) satisfies N := N/(u, 7) > Ae~*. Since € < &, we strictly have

N > Ae™? > Ae, )’ =n. (16)

Let {By,..., By} denote this packing of disjoint balls. Since v is supported on at most n points, by the Pigeonhole
Principle, at least N — n of these balls do not contain any support points of . Let Zeypy denote the indices of these empty
balls.

The Wasserstein distance W[ (s, V) involves transporting the mass from these empty balls to the support of v. For any ball
B; with i € Zempyy, the mass p(B;) must be moved a distance of at least ¢ to reach any point in supp(») (which lies outside
B;). Following the sharp derivation in Weed & Bach (2017) (Proposition 6), the aggregated transport cost is lower bounded
by:

P
WP (u,v) > 7 (%) — r4Pep, (17)
Since this inequality holds for any € < &,,, we take the limit ¢ — &,,. Substituting ¢,, = (n/A)’l/ 5 yields:
P
_ —1/s|" _ _4— s, —p/s
Wh(p,v) > 74 p[(n/A) / ] = 74 P AP/5pP/5, (18)
O

A.3. Minimum Intrinsic Dimension scaling

We recall here the Minimum Intrinsic Dimension scaling of the Sinkhorn divergence, which we leverage for the Wasserstein
distance estimation.

Theorem (MID scaling for the Sinkhorn divergences). For numerical constants independent of all problem parameters,
D) AN, £)

n

BIS.(7,9) - S.(u )] S (1+ )y

The dimensional quantity in this estimate is contained in the minimum covering numbers at scale €, demonstrating the MID
scaling phenomenon. Here, the constant L refers to the Lipschitz bound on the cost, which is assured to be finite for || - ||?
costs, in the bounded setting.

Connection to Intrinsic Dimension. In this work, we characterize the intrinsic dimension at a fixed scale through
the convergence rate of E[W;(u, [1,)] and its corresponding lower bounds. We now establish the link between this
characterization and the MID scaling bound for Sinkhorn divergences presented above.

Consider the cost function ¢ = || -||, which implies a Lipschitz constant L = 1. Suppose that over a scale interval € € [g,, €3],
the measure is sufficiently regular such that the dimension is stable across mass thresholds; specifically, d. (i, 7) = d.(u, 0)
for all 7 € (0, 1/2]. Under these conditions, Propositions A.1 and A.2 provide matching upper and lower bounds on the
Wasserstein distance convergence rate with d;, = d. for a range n € [Niyin, Nmax)- This allows us to identify the intrinsic
dimension djy,, directly with the scale-dependent covering dimension d., which is precisely the quantity governing the MID
scaling in Theorem 2.

B. Proof of Theorem 4.2: Dimension Estimation Control

Proof. Fixm > nupin and n > 1. For each k € {n, nn}, we introduce the notations

N

Wi = OT.(p, p)s Wi =0Ty = — min (X5, z;),
<)<k
where z1, ...,z oy p define the support of p} and X1, ..., Xn LLg- p are independent Monte Carlo samples (independent
of the x;7s). Set ¢(-) = || - || and notice that Diam(p) := sup, ycgupp(p) (7> Y)-
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Monte Carlo concentration for ;. Conditionally on (x1,..., k), the random variables min <y c(X;, z;) are i.i.d.
and lie in [0, Diam(p)]. Hence, Hoeffding’s inequality gives, for any ¢ > 0,

— ) 2Nt?

Define the Monte Carlo accuracy level
log(8/6)

kn := Diam(p) N

Then P(|Wk — W}| > kn) < §/4 for each k. By a union bound over k € {n,nn}, the event
Enic = {Wn = Wi < kv } 0 {[Wyn — Wi | < kn}

satisfies
P(&nvc) > 1—4d/2.

Two-sided control of 1W}' at scales n and nn. From the bounds provided in Assumption 4.1, we have for all k¥ €

[nmina nmax/n]’
Wy > Ok~ Ydme  as, (19)

and for any ¢ > 0, using the boundness of the semi-dual optimize 0. < Diam(p),

2
P (W > Cob ™/ ) < exp _ 2k
- - Diam(p)? )’

where Diam(p) is the diameter of Supp(p). Taking t = £Cok~1/4int for £ > 0 yields

. o 2k £20%2 2/ dine 26202 Co/d
P (Wi > (1+6Cok™ /%) < exp <Diain(p)2 >exp <Diam(/2))2 k! Q/d"“)-

For k1—2/dint > max {n*lfz/dint7 Dé%é%f 10g(4/5)} , the event

Eq = (Wi < (14 Cok™ M} N WS < (14 Colnk) =1/
satisfies P(€q) > 1 — 6/2. On £q and using (19),

Crk~ Ve < Wi < (14 €)Cok™ Y%, k€ {n,nn)}. (20)

Let £ := Evc NEq. Then P(E) > 1 — 6.

Control of the population log-ratio D. Define

D :=1logW, —log W,

nn:*

From (20),

W:; c Clnfl/dint (1+§)02n1/dint:| _ l: Cl 1/dine (1+§)02 1/dins
W~ L+ &Co(nn) =™ Cy(nn) =1/ dine i+oc," o !

Taking logs and denoting Dy := log 7/ dint gives

D e [Do—b, Dy+1b], b::log((“rcﬂ) >0,
1

hence |D — Dy| < b. Moreover, the stated condition on 7 implies b < 3 Dy.
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Stability of log ﬁ/\k under Monte Carlo error. On &, we have |ﬁ/\k — W} < kn. We first ensure positivity of /V[Zm (and

similarly W,,) by requiring

1
KN S §W;n.

Using Wy, > C4 (nn)~ /e from (19), it is enough that
v < 10 —1/dint
N > 2 1 (nn) )
which is implied by the second lower bound on N in the theorem.

Wi — Wy
1 14 —F=
og( + Wy )

Assume this condition holds. Then for k& € {n,nn},

‘log W), — log Wi

Since |/I/I7k — Wi < ky < W), we have ’WFYV’: < 1 and thus |log(1 + u)| < 2|ul for |u| < 1/2 yields

k

|Wk*W]:| <2IiN

<2 .
STow W

‘log W, — log Wy

Therefore, with D= log W\n — log /V[Zm,

~ 1 1
D—-D| <2 — .
- pi< 2w (i +W,;:)

Using W > Cyn~Y/%ne and W}, > C4 (nn) =1/ dine,

1 1 2:‘43]\/‘ 1/d: 1/d: 4HN d: .
) = < [dins (1 + [dint) <« 1/dint 1,1/ dint .
o (W; - Wﬁn) N C'1 " ( g ) o Cl g "

Plugging xy = Diam(p)+/log(8/6)/(2N), we get

4Diam(p) nl/dimnl/dint log(8/6)

D-D|<
| | - 4 2N

The first lower bound on N in the theorem ensures that the RHS is at most %Do.
Denominator interval and propagation to d*. On & we have
= A Y Y _
|D — Do| < |D — D[+ |D — Do| < §D0+§D0—WD07

s0 (1 —~)Dy < D < (14 ~)Dy. Finally, we use the relation dy = log n/D to obtain

logn 7 < log n dint <& < dint '
(1+v)Do (1—=7)Do 1+ 1—7

Since P(£) > 1 — 4, this completes the proof.

Remark: Observe that, for the proof to hold, we required the condition nn < n,.x to hold.

B.1. Intrinsic Dimension estimation under the manifold hypothesis

2

We briefly discuss here, how our proof stands under the manifold hypothesis assumption, as in (Block et al., 2022). We

recall here their assumption.

16



Geometry-Aware Optimal Transport: Fast Intrinsic Dimension and Wasserstein Distance Estimation

Assumption B.1 (Geometric regularity). Let M C R? be a compact manifold of dimension d with diameter A =
diam(M) and reach 7 > 0. Furthermore, suppose that the data-generating distribution p admits a density with respect to

the uniform measure on M, bounded as 0 < wWpin < dvdoifl)M < Wmax < 00.

The positive reach 7 guarantees that M is free of self-intersections and has controlled curvature; informally, below the scale
7 the nearest-point (normal) projection onto M is single-valued, so M behaves locally like R%* . Formally, the reach of M
is

reach(M) := sup {r >0 : Vz e RP, dist(z, M) <7 = argmin |z — y|| is unique}.
yeM

This notion is standard in geometric inference, and the assumption 7 > 0 holds, for instance, if M C R%isa compact,
embedded C'>! submanifold. We refer to (Block et al., 2022) for more details on the notion of reach and its role in OT-based
intrinsic-dimension estimation. Here, we note wq,, the volume of the unit d-dimensional ball.

Proposition B.2 (((Block et al., 2022))Upper and lower bound on the Wasserstein error under the manifold hypothesis). For

o d g vol M (;)*dM .

4de Wmin
we have, for any measure o, of n points
1
1 (dypvol M\ dm _ 1
o> 2 (),
32 \ 4wg o Winin
Also, for a constant C' < 48, we have

E[Wi(pn,p)] < C <V°1M ) ' \/ log ( NWinin Diam(p) >

NWmin d g volag

. ., . . 7din
Using Proposition B.2, we thus can apply our Theorem 4.2, with the constants: dint = daq, Npin = W (%) ‘)
1

_ _ 1 ( dipivol M _ vol M ' dint Nwmin Diam(p)dint
Nmax = +OO’ Ol 32 ( 4wwmin )’ and 02 - C ( Wmin ) \/IOg ( ding VOIM :

C. Proof of Proposition 5.3: Convergence of Diagonal Richardson
Proof. We analyze the bias and stochastic deviation separately.

Let the regularization parameter scale as €,, < n~“. Based on standard expansions and our assumption that the statistical
bound holds with equality, we have:

Biasen(n) = Cenn 2% 4+ 0(n=29) , (22)
Biasstat(n) — Cstatn_(l_adint)/z + O(n—(l—adim)/Q) ) (23)

To achieve the optimal convergence rate, we balance the leading order terms by equating their exponents:

1 — adiy
2 = # e da=1-adp < aldy +4) = 1.
This yields the optimal decay choice a = m. Under this choice, both bias terms decay at the common rate +:
9 1-— adint 2
= Za = = .
7 2 d+4
Consequently, the total expectation admits the expansion:
E[S:, n] = W3 + (Cent + Cotar) n ™7 + 0(n ™). (24)
e
total
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The diagonal Richardson estimator is defined as RD'ag 1= Wop Ss%,gn + wnggmn. By linearity, its expected value is:

[RDlag] = w2n]E[§€2n,2n} + wnE[é\snn]
Substituting the expansion from (24) separately for the entropic and statistical terms:

E(R5,"] = W3 (wsn + wn)
+ Cent (W20 (2n) ™7 + w,n~")  (Entropic First Order)
+ Cytae (W2r(2n) ™7 + w,n~7)  (Statistical First Order)

+o(n™7).
. Y
The weights are chosen as wa,, = 23—_1 and w, = 55— 1 We verify the cancellation conditions:
271
L. woy +wy =55 =1
_ _2v27v1 _ 1-1
2. ’1,U2n(27’l) v +w, = Tov_1 T 9v_1 — 0.

Because both biases scale with n~7, the same weights eliminate the leading terms of both Cey and Cy,, simultaneously.
Thus: '
[EIR5] — WE| = o(n™). 25)

Using Proposition 4 from (Chizat et al., 2020), we have P [|§En — E[§En]| > t} < 2exp(—nt?/D?4), therefore, noting
Zp = Aen,n - ]E[:g\gmn], we have

e [ - m

| < wan B[ Zan ) + o [E] Za ]

2w D? 4 D? B
< fwanl [ == + = 0(n~'12).
Combining the residual bias and stochastic deviation bounds, we conclude
B[ |29 — W3] < o(n™) + On™1/%) = ofu” 1),

O

Remark: Robustness to Rate Mismatch and Small Sample Efficiency. While the proof above assumes perfect balancing
(Yent = Ystat = 7Y), the diagonal Richardson estimator remains highly effective even if the statistical bias decays at a slightly
faster rate 3 > v (making it asymptotically negligible compared to entropic bias). This is particularly relevant in the small
sample regime (n small), where “asymptotically better” terms may still possess large constants.

Let the statistical bias be of the form Biasgy,(n) = CyanP. The statistical first order bias after extrapolation becomes:
Wy Cstar(21) ™7 + W, Csan ™ = Cyan™? (w2277 + wy,) .

Substituting the weights wa,, = 23—11 and wy, = 55— 1, we define the Bias Reduction Factor p(83,7):

w2 P tw, 277F—1

p(B,7) == 1 = "1

(26)
We observe two key properties:

1. Exact Cancellation: If 5 = +, then p(v,~) = 0, recovering the main theorem.
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2. Local Continuity (Small n Regime): In optimal transport, the entropic rate v = 2a and statistical rate § =
(1 — adint)/2 are algebraically coupled. For any choice of a near the optimal value m, the difference 6 = 5 — y is
small. A Taylor expansion around § ~ 0 yields:

—dIn2
LR e

Thus, even if the rates are not identical, the estimator suppresses the statistical bias by a factor proportional to the rate
mismatch ¢ for computationally tractable n (where n =7 is not yet negligible). This further shows that this method is
also robust to our estimation of d;t.

In the same way, we observe that Richardson is robust to small oscillations of Cl.

Remark: different bias conjecture Recent results by Goldfeld et al. (2024) establish a Central Limit Theorem for the
Sinkhorn Divergence, noting that the expected finite-sample error scales as E[S: ,] — S. = O(1/y/n + n~!'r.) (see their
Remark 7). The factor 7. depends on the variance of the Sinkhorn potentials. If we conjecture the scaling 7. = ¢~ (dinte+2)
coming from Sinkhorn second derivative, and the statistical bias becomes O(n~'e~(%n+2)) Balancing this against the
entropic bias O(g?) yields the optimal decay choice & < n~1/(dn+4)  Notably, this recovers the exact same exponent
a= ﬁ derived under the standard /n-rate assumption, suggesting that our diagonal Richardson strategy is structurally
robust to different statistical regimes.

D. Proof of Proposition 5.4: Variance Reduction with Bagging

Proof. Let Doy = {(X;,Y:)}22] be a dataset of 2NV i.i.d. samples drawn from the joint distribution of (y, ). We generate
K bags, where each bag corresponds to a subsample index set Sy, of size |Si| = N, drawn uniformly at random with
replacement.

We analyze the asymptotic variance using the Law of Total Variance, conditioning on the observed dataset Dy . The total
variance decomposes as:

Var(EK,N) = Var (E[/RSK’N | D2N]> +E [Var(}A%K,N | D2N) . (27)

Term I: Dataset Variance Term II: Bagging Variance

Asymptotic Linear Expansion.

We first use that the empirical Sinkhorn Divergence is second-order Hadamard differentiable (Goldfeld et al., 2024).
Therefore, we can use the second order Taylor expansion. The first-order term L. is linear and can be rewritten such as

1 2N
Ls = ﬁ ;‘bE(Z?)

where ¢, is the so-called influence function.The first-order von Mises expansion gives:

Seon =S: + NZ@ ) + ran (o), (28)

where E is the population value, Z; = (X;,Y;), and ¢ is the canonical influence function with E[¢(Z)] = 0 and
Var(¢e(2)) = o?.

Similarly, for any subsample Sy, of size IV, the estimator expands as:

1
SU =S+ 5 D 02+ ). (29)

JESK

Analysis of Term I (Dataset Variance). We analyze the conditional expectation ]E[fi k.~ | D2n] by substituting the von
Mises expansions. First, recall that for the subsample mean term, the linearity of expectation implies:

23 6.(2)) | Daw Zgbs P(i € Sp) Z@ (30)

JESK
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Now, substituting the explicit expansions §57N = 8. + ¢y + r(e) (where ¢, = % > 6-(Z;)) and :9\2’2, =5+

Gerrp + TJ(\},C) (¢) into the definition of the estimator:

E[Rk v | Dan] = (1+\)S. v — AE[S') | Daw] 31)
= (1+AN(E+ ¢y +78) = A(E +E[dz 1 | Dan] +E[rary | Dan]) 32)
=(1+MN(E+ ey +7rn) = A(E+ den + E[rars | Dan]). (33)

Grouping the terms by order:

E[Rk.on | Dan] =[(14+A) = A E+[(1+A) — A degn + (1 + Arany — AE[rn1 | Day]) (34)
Bias Linear Term Pooled Remainder p2 N
1 2N
=FE+ WZ@(&,)HM. (35)

We seek the variance of this quantity. Let Viy = + Y- ¢(Z;).

Var (E[EK’QN | DQN]) = Var(VgN) + Var(pgN) + 2COV(‘/§N, pQN). (36)

Linear Variance: Since ¢.(Z;) are i.i.d., Var(Vay) = ”—]\;

Remainder Variance: The term 7 is the second-order error of the von Mises expansion, satisfying 7y = O(g~¢%nt N~1)
due to second-order Hadamard differentiability (Goldfeld et al., 2024; Stromme, 2024). By the compactness assump-
tion, moments converge, implying Var(ry) = O(e~2¢4ine N=1N=2)_ Similarly, Var(rys 1) = O(e~2¢%nt N=2). Thus,
Var(ry) = O(e2¢dine N=2),

3. Covariance: By Cauchy-Schwarz, Cov(Vy, pn) < /Var(Vy)Var(py) = O(N ~1-2gcdint),

Additionning both variance terms, we have

R 2
Var (E[RK,N | DQN]) - % + O(N~15g=cdin) 4 O(g2edime N =2). (37)

Analysis of Term II (Bagging Variance). Conditioned on D4y, the full sample estimator §£} ~ 1s constant. The variance
arises solely from the K subsampled estimators. Since the K bags are drawn independently (conditional on Doy ):

K
~ 1 ~
Var(Rg n | Dan) = A*Var (K ;_1 Eun s,

A2
D2N> = ?vmsggv | Day). (38)

The estimator on the subsample 5 élj)\, behaves asymptotically as the sample mean of the influence functions drawn without
replacement from the finite population D . Let 5355,2  be the exact sample variance of the influence function on Doy .
Using the finite population correction formulata, for the variance of a sample mean under simple random sampling with
replacement, the conditional variance of the linear term is:

1 ) 11 S3. on
Var N]%; ¢=(Z;) | Dan | = S5_an (N - 2N> +o (N : (39)

We now take the expectation over the dataset Do . Since the samples Z; are i.i.d., Sis o 18 an unbiased estimator of the

2
€

~ 2 1 52 2 ;2 S2
E |Var(Rg n | DQN)} = )\*Ug [] +o ( ¢5’2N> _ X +o (W ) (40)

population variance of the influence function. Thus, ]E[Sf)e,2 ~] = Var(¢.(Z)) = oZ exactly. Therefore,

K N N KN N
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Conclusion. Using that, by boundedness of the cost function on bounded support measures, we have o. < 1, independently
of . finally, substituting (37) and (40) back into (27), as soon as £°%int = o(N), we have:

2 o? \?o? 1.5 —cd 2cd 2 S3. on
— | & e —1.5 —cdint —2cdint \J— e
Var(Rg,n) = {N] + [KN} +O(N~ ¢ )+ O(e N +o T 41)
2 2
o (N
-z <1+ K) +o1) . “2)
This completes the proof. O
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